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Abstract

The number concentration and size distribution of traffic related particles were mea-
sured at road-side in Helsinki. Two winter campaigns took place in 10–26 February
2003 and 28 January–12 February 2004 and two summer campaigns in 12–27 August
2003 and 6–20 August 2004. The measurements were performed simultaneously at5

distances of 9 m and 65 m from the highway. This study concentrates on data that
were measured when the wind direction was from the road to the measurement site.
The total concentration in winter time was 2–3 times higher than in summer time and
it was dominated by nucleation mode particles. The particles smaller than 63 nm (at
aerodynamic size) constitute ∼90% of all particles in winter time and ∼80% of parti-10

cles in summer time. The particle total concentration increases with increasing traffic
rate. The dependence of particles smaller than 63 nm on traffic rate is stronger than
for particles larger than 63 nm both during summer and winter. The particle distribu-
tion at the roadside consists of two distinguishable modes. The GMD of nucleation
mode (Mode 1) was 20.3 nm at summer and 18.9 nm at winter. The GMD of the larger15

mode (Mode 2) was 72.0 nm at summer and 75.1 nm at winter. The GMD values of
the modes do not depend on traffic rate. The average density value for Mode 1 par-
ticles was 1.0 g/cm3 both in summer and winter time, while the average density value
for Mode 2 was 1.5±0.1 g/cm3 and 1.8±0.3 g/cm3 for summer and winter time, respec-
tively.20

1. Introduction

Traffic is one of the most significant sources of fine particles in urban environment. This
has been shown earlier in many studies (Wåhlin et al., 2001; Molnár et al., 2002; Burón
et al., 2004; Janhäll et al., 2004; Kittelson et al., 2004; Kristensson et al., 2004; Weijers
et al., 2004). Recently, also the (number) concentration of particles measured at urban25

background was related to traffic flow rate (Van Dingenen et al., 2004; Hussein et al.,
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2004) .
Based on results obtained in laboratory studies, the fine particles in vehicle exhaust

are distributed into two modes. The nucleation mode particles are small (number
based geometric mean diameter ∼5–30 nm) liquid particles consisting mainly of hy-
drocarbons, water and sulphates (Kittelson, 1998; Khalek et al., 2000). The nucleation5

mode particles form during dilution of the exhaust in the atmosphere (Abdul-Khalek,
1999; Kittelson et al., 2000). The larger particle mode (number based geometric mean
diameter 40–100 nm) in the vehicle exhaust consists of soot particles and volatile ma-
terials condensed on them (Kittelson et al., 2000; Harris and Maricq, 2001). These
soot particles are agglomerates formed in the engine during the combustion process.10

The soot particles are emitted mainly form diesel vehicles, whereas gasoline engines
emit less soot (Harris and Maricq, 2001). The nucleation mode particles are related
both in diesel and gasoline vehicles, and their emissions depend more on the external
conditions such as dilution etc.

Due to the worldwide increase in traffic intensity, the traffic related pollutant problem15

is relevant and it is hard to solve, even if the developing vehicle technology gradually
reduces emissions. In addition, new emission technologies can bring along new prob-
lems. For example, the diesel particle filters that are used for removing soot particles
from the exhaust gas, have been reported to enhance formation of nucleation mode
particles (Vaaraslahti et al., 2004).20

The size and concentrations of traffic related particles at road-sides have been widely
studied during recent years (Morawska et al., 1999; Hitchins et al., 2000; Wåhlin et al.,
2001; Molnár et al., 2002; Sturm et al., 2003; Ketzel et al., 2004; Kristensson et al.,
2004; Janhäll et al., 2004). In this paper, the concentration of different sized particles
measured at road side is connected to traffic rate. Also the differences between the25

emissions during winter and summer time are studied. Specially, the characteristics of
modes appearing in measured particle size distributions at the road-side are investi-
gated. In addition, the average density of particles in modes will be determined. There
are very limited amount of information concerning the particle density at urban mea-
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surement sights. Stein et al. (1994) measured the density of atmospheric particles in
size range 0.1–0.25µm. The measured densities varied from 1.60 to 1.79 g/cm3. Mc-
Murry et al. (2002) used DMA-APM technique to analyze the density of urban aerosol
particles of size 0.107µm and 0.309µm. They found that 0.107µm particles had den-
sities between 1.35 and 1.7 g/cm3. For 0.309µm particles they found two ranges of5

density values: low values between 0.35 and 0.65 g/cm3 and higher values approxi-
mately 1.6 g/cm3. According to authors’ knowledge, density values for urban aerosol
particles in the size range of nucleation mode have not been reported before.

2. Description of measurement campaign

The measurement site was located in Helsinki, Herttoniemi, about 6 km to east from10

the city centre. The investigated highway (Itäväylä) is one of the main roads in Helsinki
area and its direction is northeast from the city centre (Fig. 1). The highway consists of
3 lanes in both directions. The measurements were part of the Finnish project LIPIKA
(“Correlation between fine particle emissions of traffic and laboratory tests of vehicles”)
and they were performed during 4 campaigns. Two winter campaigns took place in15

10–26 February 2003 and 28 January–12 February 2004, and two summer campaigns
in 12–27 August 2003 and 6–20 August 2004. The measurements were performed
simultaneously at distances of 9 m and 65 m from the highway. The sampling heights
were 5.7 m above the ground level.

Next to the measurement site (35 m to north from 65 m cabin) a factory was located.20

Its emissions were clearly distinguishable from traffic emissions (strong concentration
peak at 30 nm). Based on the measured wind direction, the data with wind direction
directly from the factory towards the measurement site was omitted.
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2.1. Instrumentation

The total number concentration at the road-side was measured with a condensation
particle counter (CPC, TSI, model 3025). The detection limit of CPC 3025 is 3 nm.
Due to the high particle concentrations especially during the rush hours, a passive
diluter with dilution ratio ∼1:4–1:6 were used in CPC measurements. The average and5

maximum and minimum values for particle number concentration, measured by CPC,
was recorded every 5th second. During the campaigns at 2004 the Scanning Mobility
Particle Sizer designed for nano particles (nano-SMPS: nano-DMA, TSI+CPC 3025)
was used in 9 m cabin (measurement range 3 nm–57 nm). Scanning Mobility Particle
Sizer (referred further as “long-SMPS”) with DMA model 3071 and CPC 3025 was10

used in 65 m cabin during all campaigns. The “long-SMPS“ measurement covered the
size range of 5 nm–160 nm. Electrical Low Pressure Impactor (ELPI) with filter stage
was used in both cabins, covering the particle size range of 7 nm–6.6µm. The results
concerning particle concentrations, shown later, were measured at 9 m cabin. The
size distribution data measured in 65 m cabin were used only, when the modes in size15

distribution and particle density were investigated.
In addition to stationary measurement sites, the mobile measurement unit, “Sniffer”

(Pirjola et al., 2004), was used in background concentration measurements. The urban
background concentrations were measured at Saunalahti, about 600 m northwest from
the measurement site. The background particle concentrations were measured by20

SMPS and ELPI.

2.2. Traffic count

The traffic count was performed at Itäväylä by Helsinki City and Finnish Road Adminis-
tration by automatic traffic measurement system about 3 km from measurement site to-
wards the city center. The long term and continuous traffic rate measurement provides25

hourly averages. The traffic to both directions at the highway is calculated separately.
In addition, the number of heavy-duty vehicles was determined by the measurement
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system.

2.3. Meteorological conditions

The meteorological data (wind speed, wind direction, temperature and relative humid-
ity) were measured at 9 m cabin with Vaisala weather station. The maximum, minimum
and average values for temperature and relative humidity values are shown in Table 1.5

Also the average values for the day time (i.e. 06:00–20:00) are shown in Table 1.
The data was classified according to wind direction similarly with the method by

Pirjola et al. (2005). This paper concentrates on results of wind sector S1, which
consists of wind directions 255◦–345◦ (wind blowing from the road to the measurement
cabins). The wind sector is marked in Fig. 1 with dashed lines.10

3. Method to define particle density

The method used in this study for determination of particle density, is based on parallel
method described by Ristimäki et al. (2002) and Virtanen et al. (2004). The parallel
method is based on distribution measurement performed by ELPI and SMPS and fur-
ther on the relationship between particle aerodynamic size, mobility size and effective15

density. The basic idea is to minimize the difference of the measured ELPI currents
and currents simulated by using SMPS number distribution and ELPI response func-
tions (i.e. the charger efficiency and impactor kernel functions). The minimization can
be made by altering the particle density. It should be noted here, that in parallel method,
the primary output data of ELPI, i.e. the measured current signals are used. The ELPI20

number distribution is not calculated from measured currents at any point, thus the
problems caused by using the impactor stage cut point concept or inversion can be
avoided. Instead, the charging and collection of SMPS number distribution in ELPI is
simulated by using the ELPI charger efficiency curve and impactor kernel functions,
determined for the specific individual impactor used. The particle collection in impactor25
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depends on particle density. Thus, by comparing the simulated currents and measured
ELPI currents the density of particles can be found. Ristimäki et al. (2002) described
the method for unimodal distribution that consists of constant density particles. Virta-
nen et al. (2004) extended the method to be suitable for fractal-like aggregates, whose
density decreases with increasing particle size.5

To be able to apply the parallel method in road-side particle studies the method was
modified to be suitable for multi-modal distributions. In this modification, the lognormal
distributions are fitted into the measured SMPS data. These fitted lognormal distribu-
tions are then used in ELPI current simulation instead of measured SMPS distributions.
The fitting is done by assuming 3 modes in SMPS measurement range (5 nm–160 nm).10

To limit the degrees of freedom in density search procedure, the constant density of
each mode is assumed. Thus as a result, the average density of each mode is found.

The method was tested in laboratory by using two test oils: Fomblin and di-octyl
sebacate (DOS). The density of Fomblin is 1.9 g/cm3 and the density of DOS is 0.91
g/cm3. Bimodal distributions with one mode consisting of Fomblin and the other of15

DOS, were generated in laboratory by using the tube furnace for Fomblin and neb-
ulizer with condensation-evaporation cycle for DOS. The geometric mean diameters
of DOS distributions were varied between 40–50 nm and of Fomblin distributions be-
tween 90–150 nm. The resulting densities for DOS and Fomblin were 0.8±0.08 g/cm3

and 1.8±0.26 g/cm3, respectively.20

4. Results

4.1. Correlation of particle emissions and traffic rate

All results concerning traffic rate and particle concentration etc. presented in this sec-
tion were obtained at wind directions S1 during the weekdays (Monday–Friday).

In comparison to Finnish average values, the traffic rate at Itäväylä is high. The25

day time (06:00–20:00) average traffic rate was 3290 vehicles/hour during the summer
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campaigns and 2910 vehicles/hour during the winter campaigns. The average values
for traffic rate measured during the campaigns are presented in Fig. 2a. The traffic rate
is peaking during the morning and evening rush hours i.e. 06:00–10:00 and 15:00–
18:00. During the rush hours, the traffic rate reaches ∼4000 vehicles/hour. There
is no remarkable difference between the traffic rates during the winter and summer5

campaigns or between the morning and evening rush hours.
In Fig. 2b the particle concentrations measured with CPC at 9 m distance from road

are shown. The dashed lines represent the average day time background concentra-
tion values for winter and summer time (light gray line for summer time and dark gray
line for winter time). No continuous background data was achievable. Thus, the av-10

erage value of background concentration is calculated from occasional measurement
periods made by the mobile laboratory. The road side concentrations follow the same
temporal pattern as the traffic rate. Figure 2b shows, that at winter time the concentra-
tion peaking is a bit stronger during morning rush hours than during the evening rush
hours. Morawska et al. (1999), Williams et al. (2000), Molnár et al. (2002), Wehner et15

al. (2002), Charron and Harrison (2003), and Janhäll et al. (2004) observed stronger
concentration peak during the morning rush hour. Wehner et al. associated the higher
morning concentrations with the higher truck traffic rate. Molnár et al. attributed their
results to higher wind speeds and more effective vertical mixing during the afternoons.
In the case of Itäväylä, there is no difference in portion of heavy duty traffic during the20

morning and evening rush hours. During the summer campaigns the wind speeds were
lower in the morning, but at winter there were no remarkable temporal differences in
wind speeds. We assume that in our case, the effect can be explained mostly by ver-
tical mixing between high concentration air at ground level and upper air having lower
particle concentration. Because of meteorological reasons, the mixing height is sys-25

tematically larger in the afternoon than in the morning hours. Therefore, when mixing
with larger amounts of cleaner air from up above, this directly results in lower particle
concentrations for the afternoon rush hour.

The minimum concentration values take place at 03:00. Hussein et al. (2004) re-
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ported the same hours for the minimum and maximum concentrations measured at
the urban background stations located at Kumpula and Siltavuori in Helsinki. They
measured particle concentrations and distributions. The reported morning rush hour
concentrations were approximately 25 000 #/cm3 and 17 500 #/cm3 during the summer
and winter seasons correspondingly. The average values for morning rush hour con-5

centrations at road-side of Itäväylä are approximately 100 000 #/cm3 in winter time and
70 000 #/cm3 in summer time. Thus, the particle population at road-side and also the
distribution characteristics measured at road-side differ considerably from those re-
ported by Hussein et al.

The winter concentrations are approximately double compared with the summer con-10

centrations. This can be seen in Fig. 3, where the particle concentrations are presented
as a function of traffic rate. The day time background concentrations are marked with
dashed lines. The averaged night time background concentrations, calculated by using
occasional measurement periods, are ∼6000 #/cm3 and 10 000 #/cm3 for summer and
winter time, respectively. All measured data points shown in Fig. 3, with traffic rate15

<1000 vehicles/hour, are measured during night time. From Fig. 3, it can be seen that
both the summer and winter time total concentrations increase with increasing traffic
rate. A best fit to the data points was found to obey the form y∼xa, where y is particle
concentration and x is traffic rate. The exponent “a” has value 0.62 and 0.69 for sum-
mer and winter time results, respectively (Table 2.). There is no physical explanation to20

the form of the function that gives the best fit.
To find out the relationship between different particle size fractions and traffic rate

the particles are separated into two size classes based on cut-point of the 2nd im-
pactor stage of ELPI. The cut point of the 2nd stage is 63 nm. The concentration of
the particles in the size fraction of 63 nm–6.6µm is calculated from ELPI distribution25

by integrating the particle concentrations measured on stages 2–11. This size range
is referred further as “dp >63 nm”. The ELPI filter stage sometimes overestimates the
number concentration of the smallest particles (7–30 nm). Due to this, the concentra-
tion of particles smaller than 63 nm is calculated by subtracting the concentration of
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63 nm–6.6µm particles from the total number concentration measured by CPC. The
CPC detection limit (∼3 nm) gives the lowest size limit of this smaller size fraction. This
size fraction is referred further as “dp<63 nm”

In Figs. 4a and b, the concentrations of two particle size classes are presented as a
function of traffic rate. In Fig. 4a, the summer and winter concentrations for dp<63 nm5

particles are presented. These particles are mostly nucleation mode particles formed
during the dilution process in the exhaust plume. In addition, part of the traffic related
soot particles belongs to this size fraction. Also a part of the Aitken mode, which is
characteristic for urban background, is in this size range (Hussein et al., 2004). In
Fig. 4b the concentration of particles larger than 63 nm is presented. These larger10

particles contain the traffic related soot particles with volatile material condensed on
them. In addition, this size range contains Aitken mode particles and aged, not traffic
related accumulation mode particles (Longley et al., 2004; Molnár et al., 2002). The
concentration of aged accumulation mode particles can be remarkable especially when
the traffic rate is low.15

For the both size fractions the dependence of concentration (y) on traffic rate (x) is
of form y∼xa as it was for the total concentration. The “a” and R2 values are presented
in Table 2. The exponent “a” has the same values for total concentration and dp<63 nm
particle concentration. This is because the concentration of dp<63 nm particles domi-
nates the total particle concentration: the dp<63 nm particles constitute ∼90% of par-20

ticles at winter time and ∼80% of particles at summer time. The exponents “a” for
smaller size fraction data (dp<63 nm) differ in summer and winter time. This is due to
the difference in relationship between background concentrations and roadside con-
centrations. In summer time, the background particle contribution to the concentration
of dp<63 nm particles at the roadside is approximately 2 times higher than in winter25

time. Naturally the total concentration follows the same pattern. On the other hand,
there is no seasonal difference in exponent “a” of larger size fraction (dp>63 nm) data.
This is due to the similar contribution of background concentration to total concentration
in this size fraction during both seasons.
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Table 2 shows, that also the exponent of the lines fitted into different size fraction
data differs both in summer and winter time. The reason is the same as it is in the
case of seasonal difference explained above: the fraction of background concentration
of dp>63 nm particles is larger than of dp<63 nm particles.

Figures 4a and b indicate that the winter concentration of dp<63 nm particles is ap-5

proximately double compared to the summer concentration while there is no clear sea-
sonal difference in the concentration of dp>63 nm particles. The difference in seasonal
behavior of these two size fractions is related to their formation mechanisms. The soot
particles are formed during the combustion. According the laboratory studies by Ris-
timäki et al. (2005), the temperature of engine intake air does not affect remarkably10

the soot particle concentration even if the intake air temperature is below 0◦C as it was
during the winter campaigns. Thus, the soot formation seems to be insensitive to the
temperature of surrounding air. On the other hand, the formation of nucleation mode
particles is sensitive to dilution conditions, such as temperature and relative humid-
ity of surrounding air. According to studies of Kittelson et al. (2000), the low ambient15

temperatures favor nucleation at vehicle exhaust. In laboratory studies of Ristimäki
et al. (2005), the effect of low dilution temperature on nucleation mode particle con-
centration depends on vehicle technology. In vehicle test-cycle measurements the low
dilution temperatures enhanced nucleation mode formation modestly at most cases.

The nano-SMPS data measured at 9 m could not be used in number concentration20

comparison for size fractions, because the nano-SMPS concentrations were signifi-
cantly lower than the CPC concentrations. The average day time concentrations cal-
culated from nano-SMPS were only 40% of CPC concentrations at winter and 15%
of CPC concentrations at summer. This large difference can not be explained by nar-
row measurement range of nano-SMPS (3–60 nm). From the distributions measured25

with “long-SMPS” (measurement range 5–160 nm) at 65 m it can be seen, that the nu-
cleation mode particles smaller than 60 nm dominate the distributions both during the
winter and summer time. Calculated from “long-SMPS” measurements at 65 m, the
fraction of particles smaller than 60 nm is approximately 80% and 90% during the sum-
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mer and winter time, respectively. The nano-SMPS data was still used to study the
dependence of nucleation mode (dp=3–30 nm) particle concentration on vehicle den-
sity. The concentration of particles in size range 3–30 nm calculated from nano-SMPS
data was normalized in respect with the calculated maximum concentration. The re-
sults are shown in Fig. 5., where it can be seen, that the concentration of nucleation5

mode particles increases with increasing traffic rate. Due to the low number of data
points, no line was fitted to data points. But the concentration dependence of particles
in size range 3–30 nm on traffic rate is similar to that of total concentration shown in
Fig. 3. Thus, it is evident that the nucleation mode particles at the road-side of Itäväylä
are strictly related to the traffic rate. This is contradictory to the study of Charron and10

Harrison (2003). According to them, the concentration of nucleation mode particles
measured at Marylebone Road at London, UK was not related to the traffic intensity.

4.2. Characteristics of road-side distributions

In Fig. 6, the typical measured SMPS size distributions for winter and summer time are
shown. The distributions are measured with SMPS equipped with “long- DMA”, which15

was located at 65 m far from road. It should be noted here, that all results presented
in this chapter are calculated from the data measured at 65 m distance from the road
due to the wider measurement range of SMPS used in 65 m compared to the nano-
SMPS at 9 m. Figure 6 shows, that both distributions are dominated by small, probably
nucleation originated particles with peak size approximately at 20 nm. Similar obser-20

vation is reported also by Wehner and Wiedensohler (2003) and Ketzel et al. (2004).
On the right side of the distribution, the other mode can be seen. The mode is more
distinguishable in the summer than in the winter.

To find out the characteristics of particle size distributions multi-lognormal fitting for
measured distributions were done. The lognormal distribution fitting was done in the25

similar way as in the case of particle density definition procedure described above. The
measurement range of SMPS was 5–160 nm. At most of the cases, only 2 lognormal
size modes were found in the distribution, marked as “Mode 1” and “Mode 2” in Table 3,
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where the average values of day time (i.e. 06:00–20:00) results are shown. Only in few
cases, a third mode existed with size >110 nm. These results differ from the results
reported by Hussein et al. (2004). They found mostly 3 modes in Helsinki: average
geometric mean diameter (GMD) of nucleation mode was at ∼10–15 nm, Aitken mode
at 40–50 nm and accumulation mode at ∼150 nm. Their measurement sites were at5

Kumpula and Siltavuori, which represent rather the background sites than road-side
sites. Thus the concentration values were significantly smaller (about 4 times lower)
than those reported in this study and the traffic related particle emissions were mixed
into more aged urban background. At the road-side, the distribution is dominated by
fresh traffic related particles i.e. fresh nucleation mode particles and soot particles.10

Thus, Aitken and accumulation modes, which are characteristics for urban aerosol
population, are not well distinguishable in our distributions.

As shown in Table 3, the average geometric mean diameter (GMD) of traffic related
nucleation mode (Mode 1) is 20.3±2.7 nm during the summer and 18.9±1.8 nm dur-
ing the winter. Imhof et al. (2005) measured particle size distributions in two different15

road tunnels in Graz and Liverpool. They found nucleation mode with GMDs around
15–20 nm in Graz and 25 nm in Liverpool and geometric standard deviations (GSD)
approximately 1.8 and 1.5, respectively. Ketzel et al. (2004) found out that the traf-
fic related distributions peaked at 22 nm in the center of Copenhagen. In addition,
Wehner and Wiedensohler (2003) reported the peak in the urban number size distribu-20

tion around 20 nm. They also found the additional mode peaking at 10–15 nm during
the summer time. This mode was related to the new particle formation event which
correlated with the amount of global radiation. During our measurement campaign we
observed only two similar formation event days during summer campaign 2004. This
data was omitted from results. The found values for the Mode 1 correspond to values25

for nucleation mode particles of single vehicle emissions. The GMD values for nucle-
ation mode emitted by single vehicle is usually around 10–20 nm (e.g. Kittelson et al.,
2004).

The GMD of Mode 2 is 72.0±14.3 nm and 75.1±14.6 nm in summer and winter time
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respectively. Imhof et al. (2005) measured the road tunnel soot distributions peaking
at around 80–100 nm (GSD∼1.85) in tunnel in Graz. On the other hand, they also
reported that in tunnel in Liverpool, the soot mode was not clearly distinguishable and
its GMD was around 45 nm (GSD∼2.22). Rose et al. (2005) studied the soot particle
distribution in street canyon in Leipzig. They observed the soot distribution peaking at5

65 nm and 70 nm during summer and winter. They also found out that the soot particles
consists of 50–60% of concentration of 80 nm particles at the road side. In urban
background the corresponding percentile is 20–25%. In addition, the GMD values for
soot mode of singe vehicle emissions are reported to be typically 50–90 nm (e.g. Harris
and Maricq, 2001). Thus according to earlier studies, it can be assumed that the GMD10

of Mode 2 is determined by the traffic related soot particles.
In Fig. 7, the GMD values of fitted distributions are shown as a function of traffic rate.

The GMD of nucleation mode and accumulation mode seems to be rather independent
on traffic rate. At traffic rate values <500 vehicles/hour (i.e. night time measurements),
the GMD of both modes seems to increase. This is caused by diminishing portion15

of traffic related particles in particle population. At this case the urban background
i.e. Aitken and accumulation modes become dominant modes in measured distribution.
In fact, the fitted GMD values at low traffic rates are 30–40 nm and 80–140 nm which
corresponds GMDs of Aitken and Accumulation mode measured both at urban and
rural background stations (e.g. Tunved et al., 2003; Hussein et al., 2004).20

4.3. Particle density

In Table 3, also the resulted density values corresponding to these two modes
are shown. The density of “Mode 1”, i.e. nucleation mode (GMD 10–25 nm), is
1.04±0.14 g/cm3 and 0.96±0.07 g/cm3 during the summer and winter time, respec-
tively. There is no published data for density of traffic related nucleation mode parti-25

cles. Sakurai et al. (2003a) analyzed the composition of nucleation particles emitted
from heavy duty diesel engine without any aftertreatment systems. They found out
that the particles consist of organic compounds with carbon number 24–32. Sakurai et
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al. (2003b) estimated density 0.8 g/cm3 for these compounds. In addition, the nucle-
ation mode formation is connected to the sulphate formation, especially when oxidation
catalyst is used (Lepperhof, 2001; Maricq et al., 2002; Vaaraslahti et al., 2004). Ac-
cording to studies of Vogt et al. (2003) and Gieshaskiel et al. (2005) the sulphuric acid
– water nucleation seems to have important role in nucleation mode formation. This5

means that the traffic related nucleation mode particles may include also water and
sulphuric acid with densities 1 g/cm3 and 1.8 g/cm3, respectively.

The found effective density value for “Mode 2” (GMD 60–80 nm) was
1.45±0.10 g/cm3 and 1.87±0.30 g/cm3 for summer and winter time, respectively. The
results are in good agreement with the study of McMurry et al. (2002). They found10

that the density of ∼0.1µm urban aerosol particles measured in Atlanta, USA, varied
between ∼1.4–1.7 g/cm3. The density values found in this and previous studies are
high compared to the reported values for soot particle densities. The material den-
sity of soot is close to value 2 g/cm3 but soot particles are agglomerates having lower
effective density values due to the porosity of particles. According to laboratory stud-15

ies of Park et al. (2003), Virtanen et al. (2004) and Maricq et al. (2004) the density
of diesel soot particles in the soot mode is close to 1 g/cm3 in the case of particles
having size ∼60 nm and below ∼0.6 g/cm3 for the ∼100 nm sized particles. If the voids
in the agglomerated particles get filled with condensable materials while the particle
mobility size remains unchanged, the particle density grows. Still it is unlikely that the20

condensation of volatiles could increase the density of soot particles in “Mode 2” up
to 1.4–1.8 g/cm3. More probable is that “Mode 2” consists of soot particles and urban
background particles of other materials. The found density for “Mode 2” is the average
density for the externaly mixed aerosol. In fact the relatively low increase of concentra-
tion of particles larger than 63 nm with increasing traffic rate (see Fig. 4 and Table 2)25

and the results of Rose et al. (2005) discussed above supports the assumption, that a
significant portion of particles in “Mode 2” are not fresh vehicle emitted particles.
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5. Conclusions

The number concentration and size distribution of traffic related particles were mea-
sured at road-side in Helsinki in winter and summer time. The measurements were
performed simultaneously at distances of 9 m and 65 m from the highway. The total
concentration was 2–3 times higher in the winter time than in the summer time and it5

was dominated by nucleation mode particles. The dp<63 nm particles (at aerodynamic
size) constitute ∼90% of particles in winter time and ∼80% of particles in summer
time. The total number concentration of particles increases with increasing traffic rate
The dependence of dp<63 nm particles on traffic rate is stronger than for dp>63 nm
particles both during the summer and winter time.10

The particle size distribution at the roadside consists of two distinguishable size
modes. The GMD of nucleation mode (Mode 1) was 20.3 nm in summer and 18.9 nm
in winter. The GMD of the larger mode (Mode 2) was 72.0 nm in summer and 75.1 nm
in winter. These values correspond to values for nucleation mode and soot mode par-
ticles of single vehicle emissions. The average density value for Mode 1 particles was15

1.0 g/cm3 both in summer and winter time while the average density value for Mode 2
was 1.5±0.1 g/cm3 and 1.8±0.3 g/cm3 for summer and winter time, respectively. Ac-
cording to authors’ knowledge density values for urban, traffic related nucleation mode
particles have not been previously published.
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Pakkanen, T. A., Mäkelä, T., and Hillamo, R. E.: “Sniffer” – a novel tool for chasing vehicles
and measuring traffic pollutants, Atmos. Environ., 38, 3625–3635, 2004.

Pirjola, L., Paasonen, P., Pfeiffer, D., Hussein, T., Hämeri, K., Koskentalo, T., Virtanen, A.,30

Rönkkö, T., Keskinen, J., and Pakkanen, T.: Dispersion of particles and trace gases nearby
a city highway: mobile laboratory measurements in Finland, Atmos. Environ., in press, 2005.

Ristimäki, J., Virtanen, A., Marjamäki, M., Rostedt, A., and Keskinen J.: On-line measurement

566

http://www.atmos-chem-phys.org/acpd.htm
http://www.atmos-chem-phys.org/acpd/6/549/acpd-6-549_p.pdf
http://www.atmos-chem-phys.org/acpd/6/549/comments.php
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 549–578, 2006

Physical
characteristics of
roadside aerosol

particles

A. Virtanen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

of size distribution and effective density of submicron aerosol particles, J. Aerosol Sci., 33,
1541–1557, 2002.
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M., Laj, P., Lorbeer, G., Maenhaut, W., Palmgren, F., Querol, X., Rodriquez, S., Schneider,
J., ten Brink, H., Tunved, P., Torseth, K., Wehner, B., Weingartner, E., Wiedensohler, A., and15
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Virtanen, A., Ristimäki, J., and Keskinen, J.: New method to define the effective density and
fractal dimension of agglomerate particles, Aerosol Sci. Technol., 38, 437–446, 2004.20
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Table 1. The maximum, minimum and average values of temperature and relative humidity
during the winter and summer campaigns.

T (◦C) average RH (%) average
max min all day max min all day

Summer 03 22.0 7.0 15.7 16.4 98 43 79.0 76.1
Summer 04 22.0 7.0 15.4 16.0 98 42 78.7 74.7
Winter 03 5.1 −15.2 −3.3 −2.8 98 51 85.6 84.0
Winter 04 3 −17.8 −4.9 −4.9 98 55 86.9 86.3
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Table 2. The “a” values of the function y∼xa, where y is particle concentration and x is traffic
flow. The “a” and R2 values for total concentration and concentration of two size fractions for
summer and winter time data are presented in the table.

y∼xa a R2

Total concentration summer 0.62 0.70
winter 0.69 0.81

3 nm≤dp<63 nm summer 0.60 0.63
winter 0.71 0.83

63 nm≤dp<6.6µm summer 0.49 0.60
winter 0.50 0.60
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Table 3. The day time (06:00–20:00) summer and winter average values of distribution char-
acteristics (geometric mean diameter GMD, geometric standard deviation GSD and number
concentration N) and average density (ρ) of particles in the modes.

Mode 1 Mode 2
GMD GSD N ρ GMD GSD N ρ
(nm) (#/cm3) (g/cm3) (nm) (#/cm3) (g/cm3)

Summer
Average 20.3 1.7 18 960 1.0 72.0 1.8 13 750 1.5
Stdev (%) 13.5 6.2 77.3 13.3 19.8 9.6 56.9 6.6

Winter
Average 18.9 1.7 61 310 1.0 75.1 1.6 6810 1.8
Stdev (%) 9.4 4.9 44.7 7.2 19.5 12.6 72.6 16.2
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Fig. 1. Map of the measurement site. Studied wind sectors (255◦–345◦) marked with dashed
lines.
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Fig. 2. (a) The traffic rate and (b) the measured particle concentration at summer and winter
time. Dashed lines in (b) represent the day time averages for urban background (black line for
winter and light line for summer).
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Fig. 3. The particle concentrations as a function of traffic rate.
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Fig. 4. Concentrations of two different size fractions as a function of traffic rate: (a) particles
smaller than 63 nm (b) particles larger than 63 nm.
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Fig. 5. The dependence of nucleation mode particle (dp=3–30 nm) concentration on traffic
rate.
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Fig. 6. Typical SMPS size distributions measured at winter (black line) and summer (light line).
Distributions in log-log scale are presented in the upper corner.
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Fig. 7. Geometric mean diameters of “Mode 1” and “Mode 2” as a function of traffic rate.
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